
Journal of Statistical Physics, Vol. 63, Nos. 1/2, 1991

A Parallel Multigrid Algorithm
for Percolation Clusters

R. C. Brower, 1 Pablo Tamayo, 2 and Bryant York 3

Received March 6, 1990, final November 7, 1990

A new parallel cluster-finding algorithm is formulated by using multigrid relaxa-
tion methods very similar to those used for differential equation solvers. For
percolation clusters, this approach drastically reduces critical slowing down
relative to local or scan relaxation methods. Numerical studies of scaling
properties with system size are presented in the case of the 2D percolation
clusters of the Swendsen Wang Ising dynamics running on the Connection
Machine.

KEY WORDS: Multigrid; Monte Carlo method; percolation; cluster
labeling; accelerated dynamics.

1. I N T R O D U C T I O N

The rap id ident i f icat ion of geometr ica l or topo log ica l s t ructure is impor-
tan t in many p rob lems of c o m p u t a t i o n a l physics and image processing.
Here we cons ider the ident i f icat ion of perco la t ion clusters (1) (connected
c omponen t s of an undi rec ted graph) , which are the app rop r i a t e ex tended
geometr ica l s t ructures (or collective coord ina tes) being exploi ted in a new
genera t ion of very efficient M o n t e Car lo a lgor i thms. (2 5)

In par t icu lar , we want to develop cluster-f inding a lgor i thms which are
efficient on massively para l le l compute r s such as the Connec t ion Machine.

W e present a new a p p r o a c h to paral le l cluster f inding based on
combin ing t r ad i t iona l re laxa t ion techniques for op t imiza t ion p rob lems

1Department of Electrical, Computer and Systems Engineering, and Physics Department,
Boston University, Boston, Massachusetts 02215.

2 Thinking Machines Corporation, Cambridge, Massachusetts 02142, and Physics Depart-
ment, Boston University, Boston, Massachusetts 02215.

3 Computer Science Department, Boston University, Boston, Massachusetts 02215.

73

0022-4715/91/0400-0073506.50/0 �9 1991 Plenum Publishing Corporation

74 B rower et aL

and nonlocal multigrid methods, which often circumvent critical slowing
down. Our approach utilizes distance doubling to construct a series of
progressively nonlocal operators to approximate portions of the connec-
tivity matrix. The operators are applied in a nontelescoping multigrid
fashion to derive cluster connectivity information. In order to g!ve a
specific physical example, much of our discussion and numerical analysis is
based on the Swendsen-Wang (2~ algorithm for the two-dimensional Ising
model. We provide a formalism for describing algorithms of this type, and
some empirical results for our Connection Machine implementation.

2. ISING PERCOLATION CLUSTER PROBLEM

Our cluster methods are designed to have good mean performance for
a class of random clusters embedded in a regular grid. For example, we can
consider graphs G generated by the random (Bernoulli) percolation of links
(bonds) with probability p, which gives rise to the distribution

P~(G) = (1/Z1)[p/(1 - p)]U(a) (1 -- p)dU (1)

for a graph G with N(G) percolated links out of the total of dN links on
a d-dimensional lattice. (11 (Of course, the graph G is generally a collection
of many connected components.) Our algorithms will attempt to label the
connected components of the random graph in a small mean time,

(T (G)) = ~ P(G) T(G) (2)
G

The mean performance, rather than worst case performance, is the
appropriate measure of efficiency for simulations in statistical mechanics.

To study a concrete example, which requires labeling random clusters
as an inner loop, we consider the Swendsen Wang algorithm for the Ising
model (or q-state Potts model with q = 2). The Hamiltonian for the Ising
model is

U i s i n g ~ _ - 1 2 (1 -sisj) (3)
(i , j)

where the sum is taken over the bonds (i, j) on a finite periodic d-dimen-
sional hypercubic lattice with N = L a sites and spins s i= +1. The
Swendsen-Wang algorithm (2-4) for sampling the equilibrium distribution,
P(si) = Z l exp(--flgising) consists of two stages: a percolation process on
each bond with probability p o = l - e x p [- [3 (l + s i s j)] , followed by a
random flip of all spins subject to the constraint that si=sj on all
percolated (or "occupied") bonds.

Parallel Multigrid Algorithm 75

Moreover, it can be shown in general that the Swendsen-Wang
dynamics for the q-state Potts model gives rise to percolation clusters (5 7)
on graphs with the following probability distribution:

Pq(G) = (1 / Z q) qNc[p/(1 -- p)]X(G) (1 - - p)aN (4)

where N C is the total number of connected components. Thus, our two
examples, percolation (q= 1) and Ising (q=2) , are special cases of the
Fortuin-Kasteleyn random-cluster model. (6~ Clearly, the way to satisfy the
above percolation constraint (si= si) is to identify each cluster (i.e., each
set of sites which are connected by one path of occupied bonds) and set all
the spins s, on each cluster randomly to + 1 or - 1 . Simulations have
shown that if there is a rapid, O(N) method for flipping the cluster
spins, the resulting dynamics has very short relaxation times: z ~ 12 for
Swendsen-Wang (2) relative to r ~ 8 x 1 0 6 for heat bath on a 1024 x 1024
lattice.(16)

On a serial machine it is easy to implement a cluster-finding algorithm
with a running time of order N. This can be done with either a breadth-first
or depth-first search. (21) For example, consider a given enumeration of
sites, i = 1, 2 N, and randomly chosen integer labels c(i). Select the first
site with label c(1) as the root of its cluster (tree), then relabel all the con-
nected sites with the root label [c (i)= c(1)], and continue relabeling other
sites in the cluster (descending down the tree) until exhaustion. Every
relabeled site in the cluster is deleted (marked "off") from the site enumera-
tion list. Then a new "on" site is selected and the process is repeated until
a new cluster is labeled and so on. The process stops when all clusters have
been labeled. The standard Hoshen-Kopelman algorithm (s) has an empiri-
cal running time of order N for percolation on regular lattices; its worst-
case time in this problem is unknown (but can be of order N 2 for more
pathological graphs). Variants of the Hoshen-Kopelman algorithm can
achieve a worst-case run-time of order N log N or even smaller.

3. THE RELAXATION A P P R O A C H TO CLUSTER LABELING

An alternative approach to cluster labeling can be based on finding the
fixed point of a parallel iterative process. Let us introduce a connectivity
matrix Ao, which is 1 if the percolation bond between sites i and j is
occupied and zero otherwise. The parallel iterative process is

c'(i) = MIN{c(j) [(1 + A), 7 va 0} (5)

where the labels c(i) are initialized to distinct values [e.g., c(i)= i]. Note
that on the right-hand side, we have the sum of the connectivity matrix A 0
and the unit matrix (6ij). Thus, in each iteration the label c(i) on each site

76 Brower et aL

i is replaced by the minimum of itself and all the labels c(j) of its connected
neighbors. We will refer to this as the "local diffusion" algorithm. The local
diffusion algorithm is relatively fast, easy to implement, and could be the
best choice for certain applications. Unfortunately, as we will see in
Section 4', it is not very efficient to label fractal structures such as the Ising
critical clusters. The goal of our multigrid algorithm will be to introduce a
nonlocal mechanism to improve on the local relaxation of Eq. (5).

The virtue of the relaxation formulation of the cluster problem is that
we immediately see how it is analogous to many other iterative matrix
problems. In fact, if we interpret addition and multiplication in the Boolean
sense (+ = O R , . = A N D) , repeated iterations of Eq. (5) correspond to
matrix products on the Boolean matrices A~j= 0, 1. Namely, given two
successive iterations, c'(i) = MIN { c(j) 1 (1 + A),j r 0 }, followed by c"(i) =
MIN{c'(j)] (1 + A')~j r 0}, we obtain

c'(i)=MIN{c(j) l ((1 + A ') . (1 + A)),j r (6)

Thus the cluster labeling problem may be viewed as a problem in linear
algebra on the integer function c(i). It is just the problem of finding the
transitive closure of a random undirected graph embedded in a regular
lattice, alternatively referred to as finding the connected components of an
undirected graph. (21) Both multigrid concepts and the Boolean formulation
have been considered for other closely related problems. (12 ~4)

Before describing our algorithm, let us remark that for the application
to the Swendsen-Wang spin update, we do not necessarily have to solve
the cluster-finding problem. It only requires solving a closely related relaxa-
tion problem for the Ising spins si themselves. Namely, finding the new spin
state is equivalent to finding a random state among all of those that mini-
mize the "percolation energy" for a dilute Ising system,

Hpr162189 ~ Ai,(1-s~sj) (7)
<i,j>

So, in principle, it may be possible to bypass the cluster-labeling problem
altogether and to find directly (by iteration) a random member of the
degenerate ground states of Hperc. We are investigating whether such
relaxation shemes can also lead to efficient algorithms for parallel Monte
Carlo simulations.

4. THE M U L T I G R I D C L U S T E R - F I N D I N G M E T H O D

To motivate our approach, note that the full connectivity matrix

f l i f / and j lie in the same cluster
Mij = el0 otherwise

(8)

Paral lel Multigrid Algorithm 77

can be written as

M = (I + A) , . . . , (I + A)
r(a) ti (9)

= (1 +A) F(c)

where F(G) is the smallest integer such that M , (1 + d) = M (transitive
closure). Clearly, F(G) is the maximum distance between two points in the
same percolation cluster (the distance between two sites is defined as the
maximum length of a path connecting them and consisting of percolated
bonds). In graph language, F(G) is the maximum depth of the embedded
trees in all the clusters. This is related to the percolation theory exponent
brain, which is defined as the fractal dimension of the minimum distance
between two points on the same percolation cluster. For random percola-
tion (q = 1) the value of brain is reported by Herrmann and Stanley (~s~ to
be 1.130+__0.002 for d = 2 and 1.34+__0.01 for d = 3 .

The ~ diffusion" algorithm described in Section 3 forms the con-
nectivity matrix M by repeated multiplication with the matrix (1 +A);
obviously, this takes F(G) iterations. In order to reduce the number of
iterations required, we can consider a "nonlocal diffusion" algorithm of the
following form: let A(~ A, and let A (~), zJ (2) d (n) be arbitrary Boolean
matrices satisfying 0 ~<A(i)~< M (we will discuss later how they are to be
chosen). Then it is easy to see that

M = [(1 +A (n)) , . . - , (1 +A (~)), (1 +A(~ K (10)

for some integer K: certainly this holds for K = F(G), but if we are lucky
it may hold for much smaller values of K as well. It follows that the desired
cluster labeling can be obtained by an iterative algorithm similar to (5), in
which the matrix A is replaced by the cyclic sequence d (o), d (1) d (n), d (o),
A(I),..., A (n) This algorithm must run K full cycles, or K(n+ 1) steps in
all. The hope is that with a suitable choice of the A (1), A (2), d(3),..., A (n) we
may achieve K(n + 1) ~ F(G).

For graphs which are subgraphs of a regular lattice, it is convenient
to choose the matrices A (1), A(2/,..., A (n) to have a "multigrid" structure:
namely in (1 + A (t)) only those matrix elements which reach out a distance
2 t in one of the coordinate directions are allowed to be nonzero. These
matrix elements correspond to "nearest neighbors" on the lth coarse grid.
(Such a regular truncation is particularly attractive on the Connection
Machine, since it allows us to use the fast "power-of-two" NEWS
communication primitives.) The number of multigrid levels is then
/max =log2 L - 1. Figure la shows some of the multigrid A(t)'s. The matrix

D -- (1 + d (/max)) * . - - * (1 + zJ (1)) * (1 + A (0)) (11)

78 Brower et aL

corresponds to a single downward (fine-to-coarse) traversal of the levels,
while the matrix

U = (1 + A (~ (1 + A (~)) , - . . , (I + A (t~"~)) (12)

corresponds to a single upward (coarse-to-fine) traversal. The coarsest level
is l m ~ = l o g 2 L - 1 . A single "V-cycle" V = U* D is composed of a
downward traversal followed by an upward traversal.

The procedure for choosing the matrices A (t) must now be specified.
In principle they can be any Boolean matrices satisfying O<~A~)<<.M
along with the sparsity constraints. Thus the marginal choice of A (z) is the
truncation of M to bonds of length 2 ~ in the coordinate directions:

zl'~() = ~'M~J~O i f i - j i s adistance + U i n a coordinate direction (13)
otherwise

�9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 * �9 �9

i i i'i' i i i i iii
�9 . A (~ J . . ~ , . , , ,

�9 . A (2) .

� 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 7 4 1 4 9 1 4 9

, � 9 1 4 9 1 4 9 1 4 9 1 7 4 1 4 9 1 7 4 1 7 4

� 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 7 4 1 7 4 1 4 9

J J � 9 1 4 9 1 7 4 1 4 9 1 7 4 1 4 9

�9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 | * | 6 �9 �9 �9

Fig. 1. (a) Multigrid connectivity matrices A (~) connect neighbors at powers-of-two distances
along coordinate axes. (b) The connectivity matrices for half-integer levels improve con-
vergence by connecting neighbors along diagonals.

Parallel Nlultigrid Algorithm 79

This choice of A u/ i s obviously "opt imal" in the sense that it minimizes the
required number K of iterations. On the other hand, it seems impossible to
compute these "ideal" A (~ without first solving the full cluster-finding
p rob lem (i.e., comput ing M). The other choice is to define the A (n by
repeated squaring:

{ (0~(/-- 1) * A (1 1))z j if i - j i s a distance _+2 /

A~()= in a coordinate direction (14)

otherwise

This is s imply to define, but the a lgor i thm may converge ra ther slowly. We
shall make an intermediate choice as a compromise between the "ideal"
choice (13) and the "repeated squaring" choice (14). Before describing our
choice it is impor t an t to ment ion that we found it convenient to improve
convergence by defining half-integer levels (, ,f2 blocking, corresponding to
next to nearest neighbors) , in addit ion to the original integer mult igrid
levels. Some of these half-integer A.U)'s are shown in Fig. lb. In this way,
the hierarchy of connectivity matr ices consists of levels: 0, �89 1, 1�89 2,...,

/max--�89 /max'
We define our t runcated matr ices A u) by the i teration schemes shown

d iagrammat ica l ly in Fig. 2a. The d iagram establishes that the connectivity
bond between two sites (on axes at distance 2 l) is occupied if either the two
bonds at the lower level connect ing the two sites in a straight line are
occupied (level l - 1) , or there is a pa th of occupied bonds going along

A (1) A(I-1) A(/-1) A (l - ~ / ~ (1-�89

o 0 ' = " - O = O - " + . F -%.

A(I)

~ b) A (t) ~A(l) (l)

A(l) A(t) ; A (t - 1) O ~ A(z-1)

~ - - Q . + 6 ~ +

Fig. 2. Recursive definition of the A u) connectivity operators, where each higher level Au7 is
computed by a single iteration of these relations, starting with the nearest neighbor percola-
tion to define A(~ = A and the boundary conditions, All/2) = A(1/27 = A(- ~7 = O. The last term
in the first diagram should be interpreted to include the reflected term corresponding to a path
going "down-up." Iterations of the second diagram improve the connectivity by or-ing addi-
tional paths to the ones defined by the first diagram. Rotations by multiples of 45 deg generate
the diagrams for connectivity along horizontal and diagonal (half-integer) levels.

822/63/1-2-6

80 Brower et aL

diagonals (level l- �89 The diagram must be interpreted to include the
reflection of the last term, which provides the path going "down up." Rota-
tions of this diagram by multiples of 45 deg generate all the other diagrams
for connectivity along horizontal and diagonal axes (half levels). One way
to look at this is to consider that each successive connectivity operator is
formed from next to nearest neighbor bonds giving rise to a operator on
the next level l + �89 with a lattice rotated by 45 deg. Thus, the recurrence
relation for A (t+l/ relates it to itself and the two finer levels A (~+ 1/2) and
A (t~. This is equivalent to applying an eight-nearest-neighbor connectivity
operator at each integer level. In terms of our idealized V-cycle this
operator produces L 2 _ 3 factors, which we know are a necessary precondi-
tion for identifying fractal clusters in logarithmic time.

~l) are defined, they can be improved by a few iterations of Once the A o
(l) by the diagram of Fig. 2b. This diagram improves the already defined A

or-ing to it the contributions of additional paths; in this case the
"staplelike" paths at levels l - 1 and l. The more iterations of the improving
scheme that are performed, the greater is the number of paths represented
by A!9 As one would expect, these improvement iterations take con-

t j "

siderable time and therefore in practice only a few of them are performed.
Our full multigrid cluster-finding algorithm consists, therefore, of a

setup phase in which the matrices A (1~, A (1/2), A(2~,... are successively con-
structed, followed by a solution phase in which these matrices are applied
iteratively in a V-cycle. The iteration is terminated when a fixed point is
found, i.e., when the cluster labels c(i) are completely unchanged in the
most recent V-cycle.

To summarize, the multigrid algorithm consists of the following steps:

1. Obtain A(~ the connectivity of the problem at the original scale
(e.g., in the Swendsen-Wang algorithm this is the percolation
process).

2. For all levels l (0 < l~</max =logz L - 1), compute truncated
connectivity matrices A (~) (restricted to distances of 2 t in axes
directions) by:

.

4.

(a)

(b)

Initialize cluster labels to distinct values: c(i)= i.

Iterate the following relaxation scheme:

c'(i) = MIN{c(j) [(1 + A(t~)u ~ 0}

Defining d (t~ based on d (l- 1) and A (i- 1/2) using the recursive
diagram of Fig. 2a.

Improving A it) by repeated iterations of the diagram of
Fig. 2b.

(15)

Paral lel Multigrid Algorithm 81

at each level of the multigrid hierarchy according to a V-cycle
schedule:

(1 + A(~ (1 +A (~/2)) (1 + AUmax~),

(1 + A(~a~)), (1 + A (t~ax - ~/2)),..., (1 + A (~

until a fixed point is found.

5. N U M E R I C A L RESULTS FOR THE M U L T I G R I D CLUSTER
A L G O R I T H M

Here we report our numerical results and give additional details about
the parallel implementation of the algorithm.

There is a very large parameter space of multigrid methods, which
might be tuned for each distribution of graphs P(G) encountered. We have
not yet made a very systematic exploration of this space. Instead, we have
used intuition and experience to guide our choices.

We implemented our algorithm on the Connection Machine 2 (the
CM-2 is a fine-grain SIMD computer). Here each site is assigned to a (real
or virtual) processor. Since the multigrid is nontelescoping--that is, all
lattice sites belong to all grids--all processors are utilized in every cycle.
This contrasts with other parallel schemes on coarse-grain machines in
which the processors are assigned to regions of the lattice, stripes, or multi-
site blocks. (11~ Such coarser grain mappings are also possible on the CM-2
by using the "sprint nodes," but we do not explore this option in this
paper.(18)

The scaling of our algorithm, as the lattice volume N increases, will be
expressed in terms of the number of iterations per processor, where the
processor number is assumed to be equal to N. In fact, the Connection
Machine has a maximum of Np = 65,536 physical processors and it runs
more efficiently when the virtual processor ratio N/Np is on the order of 16
to 32.

Our multigrid code written in C/Paris exploits special Connection
Machine instructions (power-of-two NEWS) that provide fast communica-
tion with neighbors at a power-of-two distance along the axes. We ran
most of our simulation on 8 and 16K processor configurations with the use
of the 32K configuration for the largest lattice because of the need for
additional memory.

In the multigrid data reported in Figs. 3-5, we used a modified
V-cycle, denoted as D' (down + top), which consists of a D downward

l I I I ' I I

12 a

C3-

C
o 100

4J
0
X
0

CO
CIC

%-
0

k
Q

.C3
E

Z
10 ':

~ L >c~cc~~ / Mult i -gr id

0 0.2 0.4 0.0 0.8 1.0 2
Bond probob i 1 i ty

128 x 1 b
(D
O -
O

4 J
CQ

= i00
0

[3
X
0

r,<"

c4_

o / , L o c a l - d J . ~ s i o n
k

z I0 ::_--__-::_-:::_--_:::::-
OJ

Mult i grid
[3
L

>

I

I , I , I ,) , ! , I]

0 0.2 0.4 0.0 0.8 1.0 1.2

Inverse Temperoture i/kT

Fig. 3. Average number of relaxation s teps for the three algorithms: multigrid, scan, and
local diffusion for a 128 x 128 system. (a) The results for d = 2 random bond percolation. (b)
The results for the d = 2 S w e n d s e n - W a n g Ising dynamics. In both cases, at p = 0.5 (random
percolation) or 1/kT=0.4406868 (Ising), the clusters are fractal and the algorithms exhibit
critical s lowing down.

Parallel Multigrid Algorithm 83

traversal of the levels in which each relaxation step is followed with a hit
at the top (level0). This updating scheme is a little faster than the
canonical V-cycle. Additional speedup comes from the fact that we test for
completion after each hit at the top instead of waiting for the end of the
cycle. For that reason the data of Fig. 5 show fractional cycles.

We study how the number of iterations of Fig. lb (improvement)
affected the overall performance and found that it increased significantly
from 0 to 1 iterations and from 1 to 2 iterations, but increased slowly for
more than two. Consequently, we choose two iterations as a good com-
promise.

For comparison purposes we obtained data for the local-diffusion
algorithm and for a "scan" algorithm. The scan algorithm is based on the
"scan-with-min" operation. It is implemented by a binary tree that moves
the minimal cluster label along a single axis of the lattice. In two dimen-
sions the scan algorithm is analogous to the operator splitting technique (17/
used in differential equations w.hereby the operator 1 + A is split: 1 + A =
1 + zl x + zJy, and each iteration alternates between the exact solution of the
1D operators 1 + A x and 1 + Ay along the X and Y axes, respectively. We
will contrast this 2D scan with our 2D multigrid, which "interleaves"
distance doubling on both axes, and we shall show that the multigrid is
much more efficient for highly fractal clusters.

Different schemes will be more or less efficient depending on the
cluster statistics actually encountered in a given problem. We study the
temperature dependence of the three algorithms: multigrid, local-diffusion,
and scan. In the Swendsen-Wang algorithm the cluster distribution is effec-
ted by one parameter, the inverse temperature fl = 1/kT. At small /~ the
clusters are small and compact, so that any local algorithm will suffice. But
at large fl a single large cluster dominates and, as can see in Fig. 3, the mul-
tigrid algorithm outperforms local diffusion. In fact, at /3 = o% it can be
proved that one multigrid down D or up U cycle is exact. For intermediate
fl there is a critical point where the clusters are fractal and all our algo-
rithms experience some critical slowing down. Figure 5 shows the perfor-
mance of the multigrid algorithm for two different lattice sizes (1282 and
10242). As we see in Figs. 4b and 4c, the multigrid algorithm is much more
efficient than the 2D scan algorithm as the system size increases. From the
local diffusion data of Fig. 4b we can roughly estimate bmin to be
1.10 _+ 0.10, consistent with ref. 15.

At the critical point, all our algorithms show some critical slowing
down. (19) However, as is seen in Fig. 4, the multigrid algorithm has much
better performance than the purely local algorithm or the scan approach.
In spite of taking numerical measurements up to quite large system sizes
(20482), there is still no clear indication of a simple asymptotic behavior for

lO I i I

(B
CO

(D

C J

c-
O

0
X
0

OJ
O~

0

L
OJ
_0
E

OJ

0
L
OJ
>
<

0.1

Multi-grid

q I i I r , I ,

101 10 2 IO B 10 4

Lattl-c@ Lln@or Siz@ L

lOOO

q)

QJ

C-
O

X
0

i00

(-4--
0

L
OJ

E

m

OJ
O~

L.
CO
> 1Q

<

' ' 1 , , , , i , i , I i , , , , ,, ,

Local-dlffusion ~ Scan b

~ Multi-grid

i i [i i i i i I i ~] r i i i i i i

i0 ? iO a 104

Lottlc@ Lin@or Slz@ L

Fig. 4. (a) Average number of relaxation cycles (D') as a function of lattice size for the
multigrid algorithm (log-log plot). (b, c) Average number of relaxation steps as a function of
system size for the three algorithms: multigrid, scan, and local diffusion. They show the same
data, but graph (c) is a semilog plot.

Parallel Multigrid Algorithm 85

700 ,,, ' ' ' ' 'I ' ' ' ' ' '' '

~ 600
C ~ 500

~400

~ 300
z2oo

i00

Local-diffuslon

Scan

~ �9 ultl grid
i ~ I , = , I r , r l [i 1 1 i 1 i t

10 2 10 3 104

Lottic@ Lln@or Size L

Fig. 4. (Continued)

our algorithm. We may be seeing a long intermediate scaling region nearly
approximated by log N followed by a resurgence of a small power
behavior. Since our multigrid algorithm is nontelescoping, a single cycle is
log N deep and with logarithmic scaling at best our full multigrid algo-
rithm is O(Nlog 2 N).

6. C O N C L U S I O N S

The main result of our present investigation is to show that the mean
performance of the multigrid cluster finder has good scaling properties.
Karp (9) has developed a sequential algorithm with O(N) expected
performance for the related problem of finding the transitive closure of
a random digraph; however, he experiences critical slowing down--i.e.,
O(w(N)(Nlog N) 4/3) expected time in the critical region [where w(N) is an
arbitrary, nondecreasing, unbounded function]. Our algorithm is probably
O(NlogN) away from the critical point and somewhat worse at the
critical point. For 2D, there are known parallel algorithms with worst case
performance matching O(Nlog 2 N). It is easy to see that our worst case

86

2. nO

B r o w e r et aL

co q ml.7o

LD

].50

1.25

~ 1.00

~0.75

%
~0.50

0.25

- Multi-grid

128 x 128

_ _ , ~ I _ ~ L - - J - - - ' - - J

@.1 0.4 0.7 1.0
Inverse Temperoture 1/kT

Fig. 5. Average number of relaxation cycles (D') as a function of inverse temperature l/kT
for the multigrid algorithm. Two different lattice sizes are shown: 128 x 128 and 1024 x 1024.
The number of cycles is fractional because we test for completion inside the cycle.

performance for pathological graps is O(N21, but our purpose was to find
good mean performance for realistic systems on real computers.

In terms of absolute performance on the Connection Machine, the
update time per spin for our present multigrid code is of the order of
1.5 gsec per spin on a full 64K processor Connection Machine, This is
approximately three times as fast as the standard Hoshen-Kope lman scalar
codes running on the IBM 3090. (2~ In terms of relaxation rates our overall
Monte Carlo Ising code is already far superior to heat bath or Metropolis.
For example, due to the much shorter autocorrelation times of the
Swendsen-Wang algorithm, for a lattice of 10242 sites our code produces
statistically independent samples at an iteration rate which is about
667,000 times faster than heat bath. Consequently, although the multigrid
update time is about 25 times slower than our implementation of the heat
bath algorithm on the Connection Machine, it still gives new statistically
independent configurations about 27,000 times faster for these lattices. No
practical simulation can ignore factors of four orders of magnitude
speedup.

Parallel Multigrid Algorithm 87

If our cluster methods are applied to implementations of field
theories (5'22'23~ with floating-point intensive Monte Carlo inner loops, the
value of our approach would be more dramatic. The basic difficulty with
implementat ion of the pure Ising model is that the bit manipulat ion of heat
bath is replaced in the Connect ion Machine with the expensive com-
municat ion of cluster labels of length log 2 N. Implementat ions on scalar
machines "bit pack" several labels into a single word, thus reducing the
corresponding memory access overhead and increasing computa t ional
speed by treating bits in parallel.

We are investigating more efficient multigrid relaxation codes on the
Connect ion Machine. Algorithms based on pure spin relaxation which
a t tempt to avoid altogether the communica t ion of cluster labels are being
studied. In addition, special stencil operators which exploit the "slicewise"
architecture of the Connect ion Machine 2 could improbe the efficiency of
the multigrid cluster-finding code. However, already the multigrid
approach is proving to be a practical way to marry these extremely efficient
cluster acceleration methods to a massively parallel S I M D architecture.

A C K N O W L E D G M E N T S

We would like to acknowledge many useful conversations with
R. Edwards, R. Giles, R. Kotiuga, T. Ray, A. Sokal, B. Klein, J. Mesirov,
J. Ph. Brunet, B. Boghosian, A. Burkitt, D. Heermann, and D. Stauffer. We
are indebted to both referees for their many useful suggestions.

R E F E R E N C E S

I. D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1984).
2. R. Swendsen and J. S. Wang, Phys. Rev. Lett. 58:86 (1987).
3. W. Klein, T. Ray, and P. Tamayo, Phys. Rev. Lett. 62:163 (1989).
4. P. Tamayo, R. C. Brower, and W. Klein, J. Stat. Phys. 58:1083 (1990).
5. R. G. Edwards and A. D. Sokal, Phys. Rev. D 38:2009 (1988); A. Sokal, Monte Carlo

methods in statistical mechanics: Foundations and new algorithms, lecture notes.
6. C. M. Fortuin and P. W. Kasteleyn, Physica 57:536 (1972); P. W. Kasteleyn and C. M.

Fortuin, J. Phys. Soe. Japan Suppl. 26s:11 (1969).
7. A. Coniglio and W. Klein, J. Phys. A 13:2775 (1980).
8. J. Hoshen and R. Kopelman, Phys. Rev. B 14:3438 (1976).
9. R. M. Karp, The transitive closure of a random digraph, TR-89-047, August 1989,

International Computer Science Institute, Berkeley, California.
10. J. Woo and S. Sahni, Hypercube computing: Connected components, J. Supercomputing

3:209-234 (1989).
11. A. N. Burkitt and D. W. Heermann, Comp. Phys. Comm. 54:201 (1989).
12. A. Hansen and S. Roux, J. Phys. A 20:L873 (1987).
13. A. Stoll, J. Phys. Cond. Matter 1:6959 (1989).

88 Brower et aL

14. D. Kandel, E. Domany, D. Ron, A. Brandt, and E. Loh, Jr., Phys. Rev. Lett. 60:1591
(1988).

15. H. J. Herrmann and H. E. Stanley, J. Phys. A 21:L829 (1988).
16. N. Ito, M. Taiji, and M. Suzuki, J. Phys. (Paris) 49:C8-1397 (1988).
17. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes (Cambridge

University Press, 1988).
18. H. D. Simon, ed., Scientific Applications of the Connection Machine, (World Scientific,

Singapore, 1989).
19. P. C. Hohenberg and B. Halperin, Rev. Mod. Phys. 49:435 (1977).
20. J. S. Wang, Private communication.
21. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms (MIT Press,

1990); D. Knuth, The Art of Computer Programming, Vol. 3 (Addison-Wesley, 1973).
22. R. Brower and P. Tamayo, Phys. Rev. Lett. 62:1087 (1989).
23. U. Wolff, Phys. Rev. Lett. 60:1461 (1988).

