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A new parallel cluster-finding algorithm is formulated by using multigrid relaxa- 
tion methods very similar to those used for differential equation solvers. For 
percolation clusters, this approach drastically reduces critical slowing down 
relative to local or scan relaxation methods. Numerical studies of scaling 
properties with system size are presented in the case of the 2D percolation 
clusters of the Swendsen Wang Ising dynamics running on the Connection 
Machine. 
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1. I N T R O D U C T I O N  

The rap id  ident i f icat ion of geometr ica l  or  topo log ica l  s t ructure  is impor-  
tan t  in many  p rob lems  of c o m p u t a t i o n a l  physics and image processing.  
Here  we cons ider  the ident i f icat ion of  perco la t ion  clusters (1) (connected 
c omponen t s  of  an undi rec ted  graph) ,  which are the app rop r i a t e  ex tended 
geometr ica l  s t ructures  (or  collective coord ina tes )  being exploi ted  in a new 
genera t ion  of  very efficient M o n t e  Car lo  a lgor i thms.  (2 5) 

In par t icu lar ,  we want  to develop cluster-f inding a lgor i thms which are 
efficient on massively para l le l  compute r s  such as the Connec t ion  Machine.  

W e  present  a new a p p r o a c h  to paral le l  cluster f inding based on 
combin ing  t r ad i t iona l  re laxa t ion  techniques for op t imiza t ion  p rob lems  
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and nonlocal multigrid methods, which often circumvent critical slowing 
down. Our approach utilizes distance doubling to construct a series of 
progressively nonlocal operators to approximate portions of the connec- 
tivity matrix. The operators are applied in a nontelescoping multigrid 
fashion to derive cluster connectivity information. In order to g!ve a 
specific physical example, much of our discussion and numerical analysis is 
based on the Swendsen-Wang (2~ algorithm for the two-dimensional Ising 
model. We provide a formalism for describing algorithms of this type, and 
some empirical results for our Connection Machine implementation. 

2. ISING PERCOLATION CLUSTER PROBLEM 

Our cluster methods are designed to have good mean performance for 
a class of random clusters embedded in a regular grid. For example, we can 
consider graphs G generated by the random (Bernoulli) percolation of links 
(bonds) with probability p, which gives rise to the distribution 

P~( G) = (1/Z1)[p/(1 - p)]U(a) (1 -- p)dU (1) 

for a graph G with N(G) percolated links out of the total of dN links on 
a d-dimensional lattice. (11 (Of course, the graph G is generally a collection 
of many connected components.) Our algorithms will attempt to label the 
connected components of the random graph in a small mean time, 

(T (G) )  = ~  P(G) T(G) (2) 
G 

The mean performance, rather than worst case performance, is the 
appropriate measure of efficiency for simulations in statistical mechanics. 

To study a concrete example, which requires labeling random clusters 
as an inner loop, we consider the Swendsen Wang algorithm for the Ising 
model (or q-state Potts model with q =  2). The Hamiltonian for the Ising 
model is 

U i s i n g ~ _  - 1 2 (1 -sisj) (3) 
( i , j )  

where the sum is taken over the bonds (i, j )  on a finite periodic d-dimen- 
sional hypercubic lattice with N = L  a sites and spins s i= +1. The 
Swendsen-Wang algorithm (2-4) for sampling the equilibrium distribution, 
P(si) = Z l exp(--flgising ) consists of two stages: a percolation process on 
each bond with probability p o = l - e x p [ - [ 3 ( l + s i s j ) ] ,  followed by a 
random flip of all spins subject to the constraint that si=sj on all 
percolated (or "occupied") bonds. 
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Moreover, it can be shown in general that the Swendsen-Wang 
dynamics for the q-state Potts model gives rise to percolation clusters (5 7) 
on graphs with the following probability distribution: 

Pq( G) = ( 1 / Z q )  qNc[p/(1 -- p ) ]X(G) (1  - -  p )aN (4) 

where N C is the total number of connected components. Thus, our two 
examples, percolation (q=  1) and Ising (q=2) ,  are special cases of the 
Fortuin-Kasteleyn random-cluster model. (6~ Clearly, the way to satisfy the 
above percolation constraint (si= si) is to identify each cluster (i.e., each 
set of sites which are connected by one path of occupied bonds) and set all 
the spins s, on each cluster randomly to + 1 or - 1 .  Simulations have 
shown that if there is a rapid, O(N) method for flipping the cluster 
spins, the resulting dynamics has very short relaxation times: z ~ 12 for 
Swendsen-Wang (2) relative to r ~ 8 x 1 0  6 for heat bath on a 1024 x 1024 
lattice.(16) 

On a serial machine it is easy to implement a cluster-finding algorithm 
with a running time of order N. This can be done with either a breadth-first 
or depth-first search. (21) For example, consider a given enumeration of 
sites, i = 1, 2 ..... N, and randomly chosen integer labels c(i). Select the first 
site with label c(1) as the root of its cluster (tree), then relabel all the con- 
nected sites with the root label [ c ( i )=  c(1)], and continue relabeling other 
sites in the cluster (descending down the tree) until exhaustion. Every 
relabeled site in the cluster is deleted (marked "off") from the site enumera- 
tion list. Then a new "on" site is selected and the process is repeated until 
a new cluster is labeled and so on. The process stops when all clusters have 
been labeled. The standard Hoshen-Kopelman algorithm (s) has an empiri- 
cal running time of order N for percolation on regular lattices; its worst- 
case time in this problem is unknown (but can be of order N 2 for more 
pathological graphs). Variants of the Hoshen-Kopelman algorithm can 
achieve a worst-case run-time of order N log N or even smaller. 

3. THE RELAXATION A P P R O A C H  TO CLUSTER LABELING 

An alternative approach to cluster labeling can be based on finding the 
fixed point of a parallel iterative process. Let us introduce a connectivity 
matrix Ao, which is 1 if the percolation bond between sites i and j is 
occupied and zero otherwise. The parallel iterative process is 

c'(i) = MIN{c( j )  [ (1 + A), 7 va 0} (5) 

where the labels c(i) are initialized to distinct values [e.g., c(i)= i]. Note 
that on the right-hand side, we have the sum of the connectivity matrix A 0 
and the unit matrix (6ij). Thus, in each iteration the label c(i) on each site 
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i is replaced by the minimum of itself and all the labels c(j) of its connected 
neighbors. We will refer to this as the "local diffusion" algorithm. The local 
diffusion algorithm is relatively fast, easy to implement, and could be the 
best choice for certain applications. Unfortunately, as we will see in 
Section 4', it is not very efficient to label fractal structures such as the Ising 
critical clusters. The goal of our multigrid algorithm will be to introduce a 
nonlocal mechanism to improve on the local relaxation of Eq. (5). 

The virtue of the relaxation formulation of the cluster problem is that 
we immediately see how it is analogous to many other iterative matrix 
problems. In fact, if we interpret addition and multiplication in the Boolean 
sense (+  = O R ,  . = A N D ) ,  repeated iterations of Eq. (5) correspond to 
matrix products on the Boolean matrices A~j= 0, 1. Namely, given two 
successive iterations, c'(i) = MIN { c(j) 1 (1 + A),j r 0 }, followed by c"(i) = 
MIN{c'(j)] (1 + A')~j r 0}, we obtain 

c'( i )=MIN{c(j) l ((1 + A ' ) .  (1 + A)),j r  (6) 

Thus the cluster labeling problem may be viewed as a problem in linear 
algebra on the integer function c(i). It is just the problem of finding the 
transitive closure of a random undirected graph embedded in a regular 
lattice, alternatively referred to as finding the connected components of an 
undirected graph. (21) Both multigrid concepts and the Boolean formulation 
have been considered for other closely related problems. (12 ~4) 

Before describing our algorithm, let us remark that for the application 
to the Swendsen-Wang spin update, we do not necessarily have to solve 
the cluster-finding problem. It only requires solving a closely related relaxa- 
tion problem for the Ising spins si themselves. Namely, finding the new spin 
state is equivalent to finding a random state among all of those that mini- 
mize the "percolation energy" for a dilute Ising system, 

Hpr162189 ~ Ai,(1-s~sj) (7) 
<i,j> 

So, in principle, it may be possible to bypass the cluster-labeling problem 
altogether and to find directly (by iteration) a random member of the 
degenerate ground states of Hperc. We are investigating whether such 
relaxation shemes can also lead to efficient algorithms for parallel Monte 
Carlo simulations. 

4. THE M U L T I G R I D  C L U S T E R - F I N D I N G  M E T H O D  

To motivate our approach, note that the full connectivity matrix 

f l i f / and  j lie in the same cluster 
Mij = el0 otherwise 

(8) 
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can be written as 

M = ( I + A ) , . . . , ( I + A )  
r(a) ti .... (9) 

= (1 +A)  F(c) 

where F(G) is the smallest integer such that M ,  (1 + d ) = M  (transitive 
closure). Clearly, F(G) is the maximum distance between two points in the 
same percolation cluster (the distance between two sites is defined as the 
maximum length of a path connecting them and consisting of percolated 
bonds). In graph language, F(G) is the maximum depth of the embedded 
trees in all the clusters. This is related to the percolation theory exponent 
brain, which is defined as the fractal dimension of the minimum distance 
between two points on the same percolation cluster. For  random percola- 
tion ( q =  1) the value of brain is reported by Herrmann and Stanley (~s~ to 
be 1.130+__0.002 for d = 2  and 1.34+__0.01 for d = 3 .  

The ~ diffusion" algorithm described in Section 3 forms the con- 
nectivity matrix M by repeated multiplication with the matrix (1 +A); 
obviously, this takes F(G) iterations. In order to reduce the number of 
iterations required, we can consider a "nonlocal diffusion" algorithm of the 
following form: let A(~ A, and let A (~), zJ (2) ..... d (n) be arbitrary Boolean 
matrices satisfying 0 ~<A(i)~< M (we will discuss later how they are to be 
chosen). Then it is easy to see that 

M =  [(1 +A ( n ) ) , . . - ,  (1 +A (~)), (1 +A(~ K (10) 

for some integer K: certainly this holds for K =  F(G), but if we are lucky 
it may hold for much smaller values of K as well. It follows that the desired 
cluster labeling can be obtained by an iterative algorithm similar to (5), in 
which the matrix A is replaced by the cyclic sequence d (o), d (1) ..... d (n), d (o), 
A(I),..., A (n) ..... This algorithm must run K full cycles, or K(n+ 1) steps in 
all. The hope is that with a suitable choice of the A (1), A (2), d(3),..., A (n) we 
may achieve K(n + 1) ~ F(G). 

For graphs which are subgraphs of a regular lattice, it is convenient 
to choose the matrices A (1), A(2/,..., A (n) to have a "multigrid" structure: 
namely in (1 + A (t)) only those matrix elements which reach out a distance 
2 t in one of the coordinate directions are allowed to be nonzero. These 
matrix elements correspond to "nearest neighbors" on the lth coarse grid. 
(Such a regular truncation is particularly attractive on the Connection 
Machine, since it allows us to use the fast "power-of-two" NEWS 
communication primitives.) The number of multigrid levels is then 
/max =log2 L -  1. Figure la shows some of the multigrid A(t)'s. The matrix 

D -- (1 + d (/max)) * . - - * ( 1  + zJ (1)) * (1 + A (0)) (11) 
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corresponds to a single downward (fine-to-coarse) traversal of the levels, 
while the matrix 

U =  (1 + A  (~ (1 + A ( ~ ) ) , - . . ,  (I + A  (t~"~)) (12) 

corresponds to a single upward (coarse-to-fine) traversal. The coarsest level 
is l m ~ = l o g 2 L - 1 .  A single "V-cycle" V =  U* D is composed of a 
downward traversal followed by an upward traversal. 

The procedure for choosing the matrices A (t) must now be specified. 
In principle they can be any Boolean matrices satisfying O<~A~)<<.M 
along with the sparsity constraints. Thus the marginal choice of A (z) is the 
truncation of M to bonds of length 2 ~ in the coordinate directions: 

zl'~() = ~'M~J~O i f i - j i s  adistance + U i n  a coordinate direction (13) 
otherwise 

�9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 * �9 �9 

i i i'i'  i i i i  iii 
�9 . A ( ~ J . . ~  , . , ,  , . . . . . . . . . . . .  

�9 . A ( 2 ) .  

� 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 7 4 1 4 9 1 4 9  

, � 9 1 4 9 1 4 9 1 4 9 1 7 4 1 4 9 1 7 4 1 7 4  

� 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 7 4 1 7 4 1 4 9  

J J � 9 1 4 9 1 7 4 1 4 9 1 7 4 1 4 9  

�9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 | * | 6 �9 �9 �9 

Fig. 1. (a) Multigrid connectivity matrices A (~) connect neighbors at powers-of-two distances 
along coordinate axes. (b) The connectivity matrices for half-integer levels improve con- 
vergence by connecting neighbors along diagonals. 
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This choice of A u/ i s  obviously "opt imal"  in the sense that  it minimizes the 
required number  K of iterations. On the other  hand,  it seems impossible to 
compute  these "ideal" A (~ without  first solving the full cluster-finding 
p rob lem (i.e., comput ing  M). The other choice is to define the A (n by 
repeated squaring: 

{ (0~(/-- 1) * A (1 1))z j if i - j i s  a distance _+2 / 

A~()= in a coordinate  direction (14) 

otherwise 

This is s imply to define, but  the a lgor i thm may  converge ra ther  slowly. We 
shall make  an intermediate  choice as a compromise  between the "ideal" 
choice (13) and the "repeated squaring" choice (14). Before describing our  
choice it is impor t an t  to ment ion  that  we found it convenient  to improve  
convergence by defining half-integer levels (, ,f2 blocking, corresponding to 
next to nearest  neighbors) ,  in addit ion to the original integer mult igrid 
levels. Some of these half-integer A.U)'s are shown in Fig. lb. In this way, 
the hierarchy of connectivity matr ices consists of levels: 0, �89 1, 1�89 2,..., 

/max--�89 /max' 
We define our  t runcated matr ices A u) by the i teration schemes shown 

d iagrammat ica l ly  in Fig. 2a. The d iagram establishes that  the connectivity 
bond  between two sites (on axes at distance 2 l ) is occupied if either the two 
bonds  at the lower level connect ing the two sites in a straight line are 
occupied (level l - 1 ) ,  or there is a pa th  of occupied bonds  going along 

A (1) A(I-1) A(/-1) A ( l - ~ / ~  (1-�89 

o 0 ' = " - O = O - "  + . F  -%. 

A(I) 

~ b) A (t) ~A( l  ) (l) 

A( l ) A(t) ; A ( t - 1 ) O ~  A(z-1) 

~ - -  Q . + 6  ~ + 

Fig. 2. Recursive definition of the A u) connectivity operators, where each higher level Au7 is 
computed by a single iteration of these relations, starting with the nearest neighbor percola- 
tion to define A(~ = A and the boundary conditions, All/2) = A( 1/27 = A(- ~7 = O. The last term 
in the first diagram should be interpreted to include the reflected term corresponding to a path 
going "down-up." Iterations of the second diagram improve the connectivity by or-ing addi- 
tional paths to the ones defined by the first diagram. Rotations by multiples of 45 deg generate 
the diagrams for connectivity along horizontal and diagonal (half-integer) levels. 

822/63/1-2-6 
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diagonals (level l- �89 The diagram must be interpreted to include the 
reflection of the last term, which provides the path going "down up." Rota- 
tions of this diagram by multiples of 45 deg generate all the other diagrams 
for connectivity along horizontal and diagonal axes (half levels). One way 
to look at this is to consider that each successive connectivity operator is 
formed from next to nearest neighbor bonds giving rise to a operator on 
the next level l +  �89 with a lattice rotated by 45 deg. Thus, the recurrence 
relation for A (t+l/ relates it to itself and the two finer levels A (~+ 1/2) and 
A (t~. This is equivalent to applying an eight-nearest-neighbor connectivity 
operator at each integer level. In terms of our idealized V-cycle this 
operator produces L 2 _ 3 factors, which we know are a necessary precondi- 
tion for identifying fractal clusters in logarithmic time. 

~l) are defined, they can be improved by a few iterations of Once the A o 
(l) by the diagram of Fig. 2b. This diagram improves the already defined A 

or-ing to it the contributions of additional paths; in this case the 
"staplelike" paths at levels l -  1 and l. The more iterations of the improving 
scheme that are performed, the greater is the number of paths represented 
by A!9 As one would expect, these improvement iterations take con- 

t j  " 

siderable time and therefore in practice only a few of them are performed. 
Our full multigrid cluster-finding algorithm consists, therefore, of a 

setup phase in which the matrices A (1~, A (1/2), A(2~,... are successively con- 
structed, followed by a solution phase in which these matrices are applied 
iteratively in a V-cycle. The iteration is terminated when a fixed point is 
found, i.e., when the cluster labels c(i) are completely unchanged in the 
most recent V-cycle. 

To summarize, the multigrid algorithm consists of the following steps: 

1. Obtain A(~ the connectivity of the problem at the original scale 
(e.g., in the Swendsen-Wang algorithm this is the percolation 
process). 

2. For all levels l (0 < l~</max =logz L -  1), compute truncated 
connectivity matrices A (~) (restricted to distances of 2 t in axes 
directions) by: 

. 

4. 

(a) 

(b) 

Initialize cluster labels to distinct values: c(i)= i. 

Iterate the following relaxation scheme: 

c'(i) = MIN{c(j)  [ (1 + A(t~)u ~ 0} 

Defining d (t~ based on d (l- 1) and A (i- 1/2) using the recursive 
diagram of Fig. 2a. 

Improving A it) by repeated iterations of the diagram of 
Fig. 2b. 

(15) 
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at each level of the multigrid hierarchy according to a V-cycle 
schedule: 

(1 + A(~ (1 +A (~/2)) ..... (1 + AUmax~), 

(1 + A(~a~)), (1 + A (t~ax - ~/2)),..., (1 + A (~ 

until a fixed point is found. 

5. N U M E R I C A L  RESULTS FOR THE M U L T I G R I D  CLUSTER 
A L G O R I T H M  

Here we report our numerical results and give additional details about 
the parallel implementation of the algorithm. 

There is a very large parameter space of multigrid methods, which 
might be tuned for each distribution of graphs P(G) encountered. We have 
not yet made a very systematic exploration of this space. Instead, we have 
used intuition and experience to guide our choices. 

We implemented our algorithm on the Connection Machine 2 (the 
CM-2 is a fine-grain SIMD computer). Here each site is assigned to a (real 
or virtual) processor. Since the multigrid is nontelescoping--that is, all 
lattice sites belong to all grids--all processors are utilized in every cycle. 
This contrasts with other parallel schemes on coarse-grain machines in 
which the processors are assigned to regions of the lattice, stripes, or multi- 
site blocks. (11~ Such coarser grain mappings are also possible on the CM-2 
by using the "sprint nodes," but we do not explore this option in this 
paper.(18) 

The scaling of our algorithm, as the lattice volume N increases, will be 
expressed in terms of the number of iterations per processor, where the 
processor number is assumed to be equal to N. In fact, the Connection 
Machine has a maximum of Np = 65,536 physical processors and it runs 
more efficiently when the virtual processor ratio N/Np is on the order of 16 
to 32. 

Our multigrid code written in C/Paris exploits special Connection 
Machine instructions (power-of-two NEWS) that provide fast communica- 
tion with neighbors at a power-of-two distance along the axes. We ran 
most of our simulation on 8 and 16K processor configurations with the use 
of the 32K configuration for the largest lattice because of the need for 
additional memory. 

In the multigrid data reported in Figs. 3-5, we used a modified 
V-cycle, denoted as D' (down + top), which consists of a D downward 
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traversal of the levels in which each relaxation step is followed with a hit 
at the top (level0). This updating scheme is a little faster than the 
canonical V-cycle. Additional speedup comes from the fact that we test for 
completion after each hit at the top instead of waiting for the end of the 
cycle. For  that reason the data of Fig. 5 show fractional cycles. 

We study how the number of iterations of Fig. lb (improvement) 
affected the overall performance and found that it increased significantly 
from 0 to 1 iterations and from 1 to 2 iterations, but increased slowly for 
more than two. Consequently, we choose two iterations as a good com- 
promise. 

For  comparison purposes we obtained data for the local-diffusion 
algorithm and for a "scan" algorithm. The scan algorithm is based on the 
"scan-with-min" operation. It is implemented by a binary tree that moves 
the minimal cluster label along a single axis of the lattice. In two dimen- 
sions the scan algorithm is analogous to the operator splitting technique (17/ 
used in differential equations w.hereby the operator 1 + A is split: 1 + A = 
1 + zl x + zJy, and each iteration alternates between the exact solution of the 
1D operators 1 + A x and 1 + Ay along the X and Y axes, respectively. We 
will contrast this 2D scan with our 2D multigrid, which "interleaves" 
distance doubling on both axes, and we shall show that the multigrid is 
much more efficient for highly fractal clusters. 

Different schemes will be more or less efficient depending on the 
cluster statistics actually encountered in a given problem. We study the 
temperature dependence of the three algorithms: multigrid, local-diffusion, 
and scan. In the Swendsen-Wang algorithm the cluster distribution is effec- 
ted by one parameter, the inverse temperature fl = 1/kT.  At small /~ the 
clusters are small and compact, so that any local algorithm will suffice. But 
at large fl a single large cluster dominates and, as can see in Fig. 3, the mul- 
tigrid algorithm outperforms local diffusion. In fact, at /3 = o% it can be 
proved that one multigrid down D or up U cycle is exact. For intermediate 
fl there is a critical point where the clusters are fractal and all our algo- 
rithms experience some critical slowing down. Figure 5 shows the perfor- 
mance of the multigrid algorithm for two different lattice sizes (1282 and 
10242). As we see in Figs. 4b and 4c, the multigrid algorithm is much more 
efficient than the 2D scan algorithm as the system size increases. From the 
local diffusion data of Fig. 4b we can roughly estimate bmin to be 
1.10 _+ 0.10, consistent with ref. 15. 

At the critical point, all our algorithms show some critical slowing 
down. (19) However, as is seen in Fig. 4, the multigrid algorithm has much 
better performance than the purely local algorithm or the scan approach. 
In spite of taking numerical measurements up to quite large system sizes 
(20482), there is still no clear indication of a simple asymptotic behavior for 
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our algorithm. We may be seeing a long intermediate scaling region nearly 
approximated by log N followed by a resurgence of a small power 
behavior. Since our multigrid algorithm is nontelescoping, a single cycle is 
log N deep and with logarithmic scaling at best our full multigrid algo- 
rithm is O(Nlog 2 N). 

6. C O N C L U S I O N S  

The main result of our present investigation is to show that the mean 
performance of the multigrid cluster finder has good scaling properties. 
Karp (9) has developed a sequential algorithm with O(N) expected 
performance for the related problem of finding the transitive closure of 
a random digraph; however, he experiences critical slowing down--i.e., 
O(w(N)(Nlog N) 4/3) expected time in the critical region [where w(N) is an 
arbitrary, nondecreasing, unbounded function]. Our algorithm is probably 
O(NlogN) away from the critical point and somewhat worse at the 
critical point. For 2D, there are known parallel algorithms with worst case 
performance matching O(Nlog 2 N). It is easy to see that our worst case 
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Fig. 5. Average number of relaxation cycles (D') as a function of inverse temperature l/kT 
for the multigrid algorithm. Two different lattice sizes are shown: 128 x 128 and 1024 x 1024. 
The number of cycles is fractional because we test for completion inside the cycle. 

performance for pathological graps is O(N21, but our purpose was to find 
good mean performance for realistic systems on real computers. 

In terms of absolute performance on the Connection Machine, the 
update time per spin for our present multigrid code is of the order of 
1.5 gsec per spin on a full 64K processor Connection Machine, This is 
approximately three times as fast as the standard Hoshen-Kope lman  scalar 
codes running on the IBM 3090. (2~ In terms of relaxation rates our overall 
Monte Carlo Ising code is already far superior to heat bath or Metropolis. 
For example, due to the much shorter autocorrelation times of the 
Swendsen-Wang algorithm, for a lattice of 10242 sites our code produces 
statistically independent samples at an iteration rate which is about 
667,000 times faster than heat bath. Consequently, although the multigrid 
update time is about 25 times slower than our implementation of the heat 
bath algorithm on the Connection Machine, it still gives new statistically 
independent configurations about 27,000 times faster for these lattices. No 
practical simulation can ignore factors of four orders of magnitude 
speedup. 
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If our  cluster methods are applied to implementations of field 
theories (5'22'23~ with floating-point intensive Monte  Carlo inner loops, the 
value of our  approach  would be more  dramatic.  The basic difficulty with 
implementat ion of the pure Ising model  is that  the bit manipulat ion of heat 
bath is replaced in the Connect ion Machine with the expensive com- 
municat ion of  cluster labels of length log 2 N. Implementat ions  on scalar 
machines "bit pack" several labels into a single word, thus reducing the 
corresponding memory  access overhead and increasing computa t ional  
speed by treating bits in parallel. 

We are investigating more efficient multigrid relaxation codes on the 
Connect ion  Machine. Algorithms based on pure spin relaxation which 
a t tempt  to avoid altogether the communica t ion  of cluster labels are being 
studied. In addition, special stencil operators which exploit the "slicewise" 
architecture of the Connect ion  Machine 2 could improbe the efficiency of 
the multigrid cluster-finding code. However,  already the multigrid 
approach  is proving to be a practical way to marry  these extremely efficient 
cluster acceleration methods to a massively parallel S I M D  architecture. 
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